Environmental product declaration In accordance with ISO 14025, ISO 21930 and EN 15804+A2 A specific EPD from Derome for pre-painted exterior cladding made of spruce, u 16% ## Owner of the declaration: Derome Timber AB Bjurumsvägen 14 432 68 Veddige Sweden www.derome.se ## Product category /PCR: NPCR 015, Part B for wood and wood-based products ## Program holder and publisher The Norwegian EPD Foundation #### Declaration number: NEPD-11838-11784 **Issue date**: 16.07.2025 Valid to: 16.07.2030 ## **EPD Software:** This EPD is based on IVL EPD Generator for the Sawmill products (NEPDT26) and follow the approved background database verification approach. The Norwegian EPD Foundation # **General information** #### Product: Pre-painted exterior cladding made of spruce, u 16% Mellanstruken panel, gran, u 16% #### **Program Operator:** The Norwegian EPD Foundation Post Box 5250 Majorstuen, 0303 Oslo, Norway Phone: +47 23 08 80 00 Email: post@epd-norge.no #### **Declaration Number:** NEPD-11838-11784 # This declaration is based on Product Category Rules: CEN Standard EN 15804 A2 serves as core PCR and PCR Part B for wood and wood-based products for use in construction (NPCR 015 07.10.2021). #### Statement of liability: The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer, life cycle assessment data and evidences. #### Declared unit: 1 m3 painted wood with a thickness of 22 mm and a moisture content (u) of 16%. ### Declared unit with option: 1 m3 planed timber A1-A5, C1-C4 and D #### **Functional unit:** — #### Verification: Independent verification of the declaration and data, according to ISO14025:2010. □ Internal #### Third party verifier: Callum Hill JCH Industrial Ecology Ltd (www.jchie.co.uk) Independent verifier approved by EPD Norway #### Owner of the declaration and manufacturer: Derome Timber AB Contact person: Elias Brag Phone: +46 (0)340 666410 Email: info@derome.se Web: www.derome.se #### Place of production: Derome Sweden #### Management system etc: FSC DNV-COC-001567 & DNV-CW-001567 PEFC DNVSE-PEFC-COC-211 ## Organisation no: SE 556550-6960 #### Issue date: 16.07.2025 #### Valid to: 16.07.2030 #### Year of study: 2022 #### Comparability: EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context. #### The EPD has been worked out by: Elias Brag Project Manager, Derome Timber AB Clias Brag #### Approved by: Håkon Hauan Managing Director EPD Norway ## **Product** #### Product description: Pre-painted exterior cladding is intended for use on facades and is supplied with two layers coating of paint on the front and side edges. Example of area of use is any type of external wall that will need one more coating of paint to be completed. The average moisture ratio of the declared products in use is set to 16 % (EN 14298). #### Product specification: Pre-painted exterior cladding is produced in different sizes and the declared product is representative for the average Pre-painted exterior cladding produced with a thickness of 22 mm. Conversion factor from m³ to m²: 42,6 m² per m³ | Materials, product | kg/m³ | weight-% | |--------------------|-------|----------| | Spruce/whitewood | 467 | 97% | | Pine/redwood | 0 | 0% | | Primer paint | 14,9 | 3% | | Sum | 482 | 100% | | Packaging materials | kg/m³ | weight-% | |---------------------|-------|----------| | Wood | 1,31 | 65% | | Polyethene film | 0,61 | 30% | | Plastic strap | 0,08 | 4% | | Steel strip | 0 | 0% | | Cardboard | 0 | 0% | | Sum | 2,00 | 100% | #### Technical data: Pre-painted exterior cladding is delivered according to qualities and sizes specified by demands on different markets. For the European market, the European EN standards and the Swedish publication 'Appearance grading of softwoods – European spruces, firs, pines, Douglas fir and larches are typically applicable'. The raw dry mass for spruce is 384 kg/m3 as Swedish average and used here to calculate biogenic carbon content and the delivery density including water according to the current moisture content. #### Market: Main markets are Sweden and Northern Europe. #### Reference service life: Reference service life is normally 25 or 30 years. Use QR code for **fact sheet** on Swedish wood products. ## LCA: Calculation rules #### **Declared unit:** 1 m3 planed timber #### Conversion factor to kg [m³/kg]: 0.00208 #### System boundary: Flow chart over production (A3) of the declared product and all other modules is shown below. Module A4 to D is further explained in the scenario section. Figure 1 Declared product manufacturing and transport to a customer and the remaining lifecycle. #### Data quality: The roundwood transport settings and planing/sawmill use specific LCA data. Representative generic data LCA data is used for the forestry. Generic upstream database LCA data are used for energy wares and small amount of auxiliary materials that are mainly from ecoinvent 10.1. LCA data for diesel is based on European average (6% biobased components). # Cut-off criteria: All major raw materials and all the essential energy used are included. All production process are included, hence the few limited cut off that occurs (<<1%): Packaging materials are not substituted in module D. This cut-off rule does not apply for hazardous materials and substances. Inherent biogenic carbon and stored energy in packaging material is balanced out directly. ## Allocation: The allocation are made in accordance with the provisions of EN15804. All impacts from the planning of boards are allocated to the main product. The sawmill and its multiple co-products are allocated based on their different economic values, except the drying process that is attributed to the intermediate product on physical premises representative for the final product moisture content. The economic value of the different parts of the input round timber are attributed using the market value of its final products/co-products. The shavings is sold and attributed to its upstream impact from its previously processes. A conservative approach (double accounting) is used for transport (module A2) of round timber to the sawmill based on economic allocation factors as oulined in cPCR EN16485. A conservative economic allocation approach is used for forestry products, where no impact is allocated to the tops and branches (GROT), except forestry operations aimed for GROT (forwarding and shipping). Indicator result on potential soil quality (SQP) is assessed based on national characterisation factors for Swedish forestry (Horn et al 2021). #### Calculation of biogenic carbon content: Sequestration (module A1) and emissions of biogenic carbon are calculated according to EN16485:2014/EN15804+A2, where the net biogenic carbon cycle A to C is zero (i.e. carbon dioxide neutral). In this EPD, the amount of biogenic carbon stored in the product (module A3) is reported additionally (according to EN 15804 A2) as biogenic carbon stored in the product (see table 'Resource use'). For biogenic carbon in all other modules after A3, the carbon in the products is assigned to the module where the emission occurs in order to support the modularity principle in EN15804, so the net result is zero. Biogenic carbon and energy stored in packaging materials (less than 5 weight-%) are directly balanced out and therefore not visible in the environmental indicator result. ## LCA: Scenarios and additional technical information The following information below describe the scenarios in the different modules of the EPD. Transport from production place to user (A4) | Туре | Load factor, % (90+0%) | Type of vehicle | Distance km | Fuel | Value (I/t) | | |--------------|------------------------|----------------------|-------------|-------|-------------|-----| | Semi-trailer | 45% | TT/AT 28-34 + 34-40t | 300 | 0,027 | I/tkm | 8.2 | A4: The transportation is reported as 300 km and can be used as factor to estimate the actual distance to the specific object. #### Assembly (A5) | , 1000 mary (710) | | | |--------------------------------|------|---------| | | Unit | Value | | Material loss | % | 5 | | Crane, electricity consumption | kWh | 2,9E-02 | | Front loader, diesel | kWh | 2,8E-01 | A5: At the construction site, 4 minutes of work with front loader is assumed (Erlandsson 2015) and an average lift with a crane (Lundström 2016). 5% material loss is assumed att construction site. #### Use (B1) | | Unit | Value | |-----|------|-------| | MND | | | #### Maintenance (B2)/Repair (B3) | Maintenance (B2)/Repair (B3) | | | |------------------------------|------|-------| | | Unit | Value | | MND | | | Replacement (B4)/Refurbishment (B5) | | Unit | Value | |-----|------|-------| | MND | | | The declared product is not assumed to be exposed for wether and for that reason no mainatance is needed during the service life. ## Operational energy (B6) and water consumption (B7) | | Unit | Value | |-----|------|-------| | MND | | | No operational energy used during service life. #### End of Life (C1, C3, C4) - base scenario* | | Unit | Value | |---------------------------------|------|-------| | C1: Demolition machine (diesel) | kWh | 0,53 | | C3: To material reuse | kg | 0 | | C3: To material recycling | kg | 0 | | C3: To energy recovery | kg | 482 | | C3: Wood chipping (diesel) | kWh | 2,9 | | C4: To landfill | kg | 0 | | / /_ | | | Energy need for demolition (C1) and chipping (C3) of the wooden discarded products is found in according to Erlandsson et el (2015). The scenario accounts for 100%* energy recovery and end of waste is reached in C3. No statistics exist in Sweden on recycling of demolition wood but will likely be at least 90%. See also complementary scenario below. #### Transport to waste processing (C2)* | Туре | Load factor, % (90+0%) | | Distance km | Fuel | Value (I/t) | | |-------------------|------------------------|--------------------|-------------|-------|-------------|--| | Large lorry/truck | 45% | TT/AT 14-20+20-28t | 35 | 0,037 | 1,3 | | ^{*}C2: Assumed tranport from demolition site to local waste treatment site, from where it is then sold. #### Benefits and loads beyond the system boundaries (D) #### - base scenario* | | Unit | Value | |---|-------|-------| | Chipped discard product that substitutes fuel in a district heating plant | kg DM | 417 | | Chipped discarded product that substitute average used fuel in a district heating plant | MJ | -7744 | D: The chipped product is assumed to be used as fuel in a district heating and then replaces the average energy mix. The efficiency used for allocation is 39% for electricity and 90% for heat. It is assumed that this efficiency is the same independent of the fuel used. #### Additional technical information No additional information given. The transport assume empty return. ^{*} If less recycling rate than 100% is asked for shall the result from module C and D be multiplied by such factor that takes the actual number into account. 100% is used here to support the modular approach of using these figures on the buildings level. ## LCA: Results POCP **WDP** ADP-m&m ADP-fossil 2) kg NMVOC eq. kg Sb eq. MJ m^3 The LCA results are presented for the declared unit defined on page 2 of the EPD document. EN 15804 exists in two versions and version 2 is the latest. System boundaries: X=included, MND= module not declared, MNR=module not relevant. | ſ | - , | | | | | | | | | | | | | | | | |---|-----------------|-----------|---------------|-----------------------|---------------------------------------|-----|-------------|---------|-------------|---------------|---------------------------|-----------------------|-------------------------------|-----------|------------------|----------| | | Product stage I | | | struction
ss stage | | | l | Use sta | age | | | Er | nd of life | e stage | • | | | | Raw materials | Transport | Manufacturing | Transport | Construction,
installation process | Use | Maintenance | Repair | Replacement | Refurbishment | Operational energy
use | Operational water use | De-construction
demolition | Transport | Waste processing | Disposal | | ſ | A1 | A2 | A3 | A4 | A5 | B1 | B2 | B3 | B4 | B5 | B6 | B7 | C1 | C2 | C3 | C4 | | ſ | Х | Х | Х | х | х | MND Х | х | Х | х | | | SE | SE | SE | SE | SE | | _ | _ | _ | _ | _ | _ | SE | SE | SE | SE | | Beyond the
system
boundary | |----------------------------------| | Reuse-Recovery | | D | | х | | SE | -4,13E-02 -1,21E-05 -1,77E+03 -3,52E+03 | Core environm | Core environmental impact, version A2 and EF 3.1 — mandatory indicators | | | | | | | | | | | | |-----------------|---|-----------|----------|----------|----------|----------|----------|----------|-----------|--|--|--| | Parameter | Unit | A1-3 | A4 | A5 | C1 | C2 | C3 | C4 | D | | | | | GWP-total | kg CO ₂ e | -6,75E+02 | 1,53E+01 | 4,00E+00 | 1,73E-01 | 2,38E+00 | 7,39E+02 | 0,00E+00 | -1,84E+02 | | | | | GWP-fossil | kg CO ₂ e | 6,09E+01 | 1,52E+01 | 3,90E+00 | 1,73E-01 | 2,38E+00 | 9,45E-01 | 0,00E+00 | -1,94E+02 | | | | | GWP-biogenic | kg CO ₂ e | -7,34E+02 | 2,05E-01 | 1,15E-02 | 2,32E-03 | 3,20E-02 | 7,38E+02 | 0,00E+00 | 1,00E+01 | | | | | GWP-LULUC | kg CO ₂ e | 2,23E-01 | 1,07E-02 | 1,19E-02 | 1,22E-04 | 1,68E-03 | 6,65E-04 | 0,00E+00 | -3,32E-03 | | | | | GWP-IOBC/GHG 1) | kg CO ₂ e | 6,31E+01 | 1,53E+01 | 4,01E+00 | 1,73E-01 | 2,38E+00 | 9,46E-01 | 0,00E+00 | -1,74E+02 | | | | | ODP | kg CFC11 eq. | 3,89E-05 | 3,10E-07 | 1,96E-06 | 3,51E-09 | 4,84E-08 | 1,92E-08 | 0,00E+00 | -1,21E-06 | | | | | AP | mol H⁺ eq. | 9,38E-01 | 1,48E-01 | 5,52E-02 | 1,68E-03 | 2,32E-02 | 9,19E-03 | 0,00E+00 | -4,10E-01 | | | | | EP-freshwater | kg P eq. | 1,68E-02 | 2,51E-04 | 8,52E-04 | 2,85E-06 | 3,93E-05 | 1,56E-05 | 0,00E+00 | -3,70E-04 | | | | | EP-marine | kg N eq. | 3,36E-01 | 7,30E-02 | 2,09E-02 | 8,27E-04 | 1,14E-02 | 4,52E-03 | 0,00E+00 | -6,53E-03 | | | | | EP-terrestial | mol N eq. | 3,33E+00 | 7,66E-01 | 2,10E-01 | 8,67E-03 | 1,20E-01 | 4,75E-02 | 0,00E+00 | 7,40E-02 | | | | 5,91E-02 3,14E-05 6,17E+01 7,61E+01 2,59E-03 5,32E-08 2,20E+00 6,10E-03 3,58E-02 7,35E-07 3,03E+01 8,42E-02 1,42E-02 2,91E-07 1,20E+01 3,34E-02 0,00E+00 0,00E+00 0,00E+00 0,00E+00 **GWP-total:** Global Warming Potential; **GWP-fossil:** Global Warming Potential fossil fuels; **GWP-biogenic:** Global Warming Potential biogenic; **GWP-LULUC:** Global Warming Potential land use and land use change; **ODP:** Depletion potential of the stratospheric ozone layer; **AP:** Acidification potential, Accumulated Exceedance; **EP-freshwater:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; **EP-marine:** Eutrophication potential, fraction of nutrients reaching freshwater end compartment; **EP-terrestial:** Eutrophication potential, Accumulated Exceedance; **POCP:** Formation potential of tropospheric ozone; **ADP-m&m:** Abiotic depletion potential for non-fossil resources (**minerals and metals**); **ADP-fossil:** Abiotic depletion potential for fossil resources; **WDP:** Water deprivation potential, deprivation weighted water counsumption 2,29E-01 4,70E-06 1,94E+02 5,38E-01 9,26E-01 6,24E-04 1,01E+03 1,52E+03 **Note 1** – This additional indicator **GWP-GHG/IOBC** is also referred to as **GWP-GHG** in the context of Swedish and Finish legislation. **Disclaimer 2** – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. ## Additional environmental impact, version A2 & EF 3.1 — addition of non-mandatory indicators with poor reliability | Parameter | Unit | A1-3 | A4 | A5 | C1 | C2 | C3 | C4 | D | |----------------------|-------------------|----------|----------|----------|----------|----------|----------|----------|-----------| | PM ²⁾ | Disease incidence | 1,84E-05 | 4,22E-06 | 1,16E-06 | 4,78E-08 | 6,60E-07 | 2,62E-07 | 0,00E+00 | 1,57E-02 | | IRP 1) | kBq U235 eq | 3,62E+00 | 9,34E-02 | 1,96E-01 | 1,06E-03 | 1,46E-02 | 5,79E-03 | 0,00E+00 | -2,83E+01 | | ETP-fw ²⁾ | CTUe | 4,33E+03 | 4,49E+02 | 2,41E+02 | 5,09E+00 | 7,03E+01 | 2,79E+01 | 0,00E+00 | 0,00E+00 | | HTP-c ²⁾ | CTUh | 1,48E-07 | 1,68E-09 | 7,47E-09 | 1,90E-11 | 2,63E-10 | 1,04E-10 | 0,00E+00 | -1,24E-08 | | HTP-nc ²⁾ | CTUh | 5,02E-06 | 3,57E-07 | 2,71E-07 | 4,05E-09 | 5,58E-08 | 2,21E-08 | 0,00E+00 | 0,00E+00 | | SQP 2) | Dimensionless | 6,02E+04 | 2,00E+01 | 3,01E+03 | 2,27E-01 | 3,13E+00 | 1,24E+00 | 0,00E+00 | -3,59E+02 | **PM:** Particulate matter emissions; **IRP:** Ionising radiation, human health; **ETP-fw:** Ecotoxicity (freshwater); **ETP-c:** Human toxicity, cancer effects; **HTP-nc:** Human toxicity, non-cancer effects; **SQP:** Land use related impacts / soil quality Disclaimer 1 — This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. Disclaimer 2 — The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. Environmental impact, version A1 & CF based on CML 2012 Unit <u>C1</u> C2 C3 C4 A1-3 **A4** D **Parameter A5** -6,77E+02 -1,84E+02 1,52E+01 1,72E-01 2,38E+00 **GWP-TOT** kg CO₂ e -3,29E+01 7,39E+02 0,00E+00 **GWP-IOBC*** kg CO₂ e 6,13E+01 1,50E+01 3,91E+00 1,70E-01 2,35E+00 9,31E-01 0,00E+00 -1,84E+02 kg CFC11 e 3,86E-08 ODP 4,63E-05 2,47E-07 2,33E-06 2,80E-09 1,53E-08 0,00E+00 -9,95E-07 POCP** kg C₂H₄ e 7,26E-02 1,50E-02 9,31E-04 0,00E+00 1,04E-02 4,47E-03 1,70E-04 2,35E-03 kg SO₂ e AΡ 7,33E-01 1,04E-01 4,25E-02 1,17E-03 1,62E-02 6,42E-03 0,00E+00 -3,85E-01 FP kg PO₄3- e 3,31E-01 4,56E-02 1,91E-02 5,17E-04 7,14E-03 2,83E-03 0,00E+00 9,56E-03 ADPE ΜJ 5,84E-04 4,70E-06 2,94E-05 5,32E-08 7,35E-07 0,00E+00 2,91E-07 -1,50E-05 ADPM kg Sb e 5,04E+02 1,93E+02 3,60E+01 2,18E+00 3,01E+01 1,19E+01 0,00E+00 -1,20E+03 **GWP** Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources. - * This indicator is also referred to as **GWP-GHG** in Swedish legislation and used in the Finish and Swedish mandatory generic database for building climate declarations. - **LCI origin from GaBi database separates NOx into NO and NO₂, in combination with the applied characterization model with a marginal approach for POCP based on highly polluted ambient air, can result in a negative characterization factor for nitric oxide. Resource use, version A1+A2 and EF 3.1 — mandatory indicators | Parameter | Unit | A1-3 | A4 | A5 | C1 | C2 | C3 | C4 | D | |-----------|-------|----------|----------|----------|----------|----------|----------|----------|-----------| | RPEE | MJ | 1,43E+03 | 4,28E+00 | 7,19E+01 | 4,85E-02 | 6,69E-01 | 2,65E-01 | 0,00E+00 | 6,80E+03 | | RPEM | MJ | 7,73E+03 | 0,00E+00 | TPE | MJ | 9,16E+03 | 4,28E+00 | 7,19E+01 | 4,85E-02 | 6,69E-01 | 2,65E-01 | 0,00E+00 | 6,80E+03 | | NRPE | MJ | 4,94E+02 | 1,94E+02 | 3,57E+01 | 2,20E+00 | 3,03E+01 | 1,20E+01 | 0,00E+00 | -1,25E+03 | | NRPM | MJ | 3,09E+02 | 0,00E+00 | 1,55E+01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | TRPE | MJ | 8,03E+02 | 1,94E+02 | 5,11E+01 | 2,20E+00 | 3,03E+01 | 1,20E+01 | 0,00E+00 | -1,25E+03 | | SM | kg | 4,51E-01 | 0,00E+00 | 2,25E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | RSF | MJ | 7,51E-01 | 0,00E+00 | 3,76E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -4,97E+03 | | NRSF | MJ | 3,80E-01 | 0,00E+00 | 1,90E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -1,34E+03 | | W | m^3 | 6,88E+00 | 1,25E-02 | 3,45E-01 | 1,42E-04 | 1,96E-03 | 7,77E-04 | 0,00E+00 | 0,00E+00 | RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water. Energy stored as material in the packaging materials is direct balanced out in the module it arrise and stored in the product is balanced out over the life cycle, exactly the same as stored biogenic carbon is reported in GWP. End of life — Waste, version A1+A2 and EF 3.1 — mandatory indicators | Parameter | Unit | A1-3 | A4 | A5 | C1 | C2 | C3 | C4 | D | |-----------|------|----------|----------|----------|----------|----------|----------|----------|-----------| | HW | kg | 4,58E+00 | 1,22E-01 | 2,36E-01 | 1,38E-03 | 1,90E-02 | 7,55E-03 | 0,00E+00 | -3,32E-08 | | NHW | kg | 3,80E+01 | 0,00E+00 | 1,90E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -6,71E-01 | | RW | kg | 1,68E-03 | 0,00E+00 | 8,40E-05 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | -2,25E-01 | HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed End of life — Output flow, version A1+A2 and EF 3.1 — mandatory indicators | Parameter | Unit | A1-3 | A4 | A5 | C1 | C2 | C3 | C4 | D | |-----------|------|----------|----------|----------|----------|----------|----------|----------|----------| | CR | kg | 0,00E+00 | 0,00E+00 | 2,89E-92 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | MR | kg | 9,52E-01 | 0,00E+00 | 4,76E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | MER | kg | 6,26E-01 | 0,00E+00 | 2,00E+00 | 0,00E+00 | 0,00E+00 | 4,82E+02 | 0,00E+00 | 0,00E+00 | | EEE | MJ | 0,00E+00 | 0,00E+00 | 2,89E-92 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ETE | MJ | 7,92E-02 | 0,00E+00 | 3,96E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy Information describing the biogenic carbon content at the factory gate | Biogenic carbon content | Amount | Unit/DU | |--|--------|---------| | Biogenic carbon content in product | 201 | kg C | | Biogenic carbon content in the accompanying packaging* | 0,56* | kg C | 44/12 is the ratio between the molecular mass of CO₂ and C molecules. ^{*} The biogenic carbon and its energy content stored in packaging materials is less tha 5% and therefore according to EN 15804 direct balanced out in the environmental indicator result (i.e. set to zero for GWP and energy usd as materials). ## LCA: Complementary scenario results This section includes an alternative end of life scenario and create an information model that in combination with the main scenario reported above can be used by the end-user to define a specific scenario based on local conditions. #### Alternative 100% scenario for the scenario: Deconstruction losses **General:** It should be noticed that landfilling of organic waste as wood is not allowed by EC legislation and the worst scenario alternative will then be the fact that the deconstruction/demolition process generate a wood fraction that will not be recycled at all. Such waste flow can be generated in the deconstruction process and where the wood is then wasted on the surface or alternative in the topsoil in the ground at the construction site or elsewhere. **C1**, **C2**: The demolition process C1 is the same as in the main scenario reported above. There will not be any transport C2 since the waste is lost at the site. **C4:** The modelled scenario presented below is based on the wood that wooden remains on the site of the building being broken down aerobic, that is, with access to oxygen and completely decomposed within the 100-year time-related cut off that is applied. In such aerobic decomposition is the inherent carbon transformed to carbon dioxide (compared to an anaerobic process that partly also create methene). | End of life stage | | | | | | | | | | |-------------------------------|-----------|------------------|----------|--|--|--|--|--|--| | De-construction
demolition | Transport | Waste processing | Disposal | | | | | | | | C1 | C2 | C3 | C4 | | | | | | | | Х | Х | Х | х | | | | | | | | SE | SE | SE | SE | | | | | | | | Beyond the
system
boundary | |----------------------------------| | Reuse-Recovery | | D | | х | | SE | ## Core environmental impact, version A2 and EF 3.1 — mandatory indicators | | - | | | | | | | |-----------------------|----------------------|---|----------|----------|----------|----------|----------| | Parameter | Unit | | C1 | C2 | C3 | C4 | D | | GWP-total | kg CO ₂ e | 1 | 1,73E-01 | 0,00E+00 | 0,00E+00 | 7,38E+02 | 0,00E+00 | | GWP-fossil | kg CO ₂ e | 1 | 1,73E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | GWP-biogenic | kg CO ₂ e | 2 | 2,32E-03 | 0,00E+00 | 0,00E+00 | 7,38E+02 | 0,00E+00 | | GWP-LULUC | kg CO ₂ e | 1 | 1,22E-04 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | GWP-IOBC/GHG 1) | kg CO ₂ e | 1 | 1,73E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ODP | kg CFC11 eq. | 3 | 3,51E-09 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | AP | mol H⁺ eq. | 1 | 1,68E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | EP-freshwater | kg P eq. | 2 | 2,85E-06 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | EP-marine | kg N eq. | 8 | 8,27E-04 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | EP-terrestial | mol N eq. | 8 | 8,67E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | POCP | kg NMVOC eq. | 2 | 2,59E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ADP-m&m ²⁾ | kg Sb eq. | 5 | 5,32E-08 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ADP-fossil 2) | MJ | 2 | 2,20E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | WDP | m^3 | (| 6,10E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | GWP-total: Global Warming Potential; GWP-fossil: Global Warming Potential fossil fuels; GWP-biogenic: Global Warming Potential biogenic; GWP-LULUC: Global Warming Potential land use and land use change; ODP: Depletion potential of the stratospheric ozone layer; AP: Acidification potential, Accumulated Exceedance; EP-freshwater: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-marine: Eutrophication potential, fraction of nutrients reaching freshwater end compartment; EP-terrestial: Eutrophication potential, Accumulated Exceedance; POCP: Formation potential of tropospheric ozone; ADP-m&m: Abiotic depletion potential for non-fossil resources (minerals and metals); ADP-fossil: Abiotic depletion potential for fossil resources; WDP: Water deprivation potential, deprivation weighted water counsumption **Note 1** – This additional indicator **GWP-GHG/IOBC** is also referred to as **GWP-GHG** in the context of Swedish and Finish legislation. **Disclaimer 2** – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. Additional environmental impact, version A2 & EF 3.1 — addition of non-mandatory indicators with poor reliability | Parameter | Unit | | C1 | C2 | C3 | C4 | D | |----------------------|-------------------|--|----------|----------|----------|----------|----------| | PM ²⁾ | Disease incidence | | 4,78E-08 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | IRP 1) | kBq U235 eq | | 1,06E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ETP-fw ²⁾ | CTUe | | 5,09E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | HTP-c ²⁾ | CTUh | | 1,90E-11 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | HTP-nc ²⁾ | CTUh | | 4,05E-09 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | SQP 2) | Dimensionless | | 2,27E-01 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | PM: Particulate matter emissions; IRP: Ionising radiation, human health; ETP-fw: Ecotoxicity (freshwater); ETP-c: Human toxicity, cancer effects; HTP-nc: Human toxicity, non-cancer effects; SQP: Land use related impacts / soil quality Disclaimer 1 — This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator. Disclaimer 2 — The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator. Environmental impact, version A1 and CF based on CML 2012 Parameter <u>C1</u> C2 C3 C4 ח **GWP-TOT** kg CO₂ e 1,72E-01 0,00E+00 0,00E+00 7,38E+02 0,00E+00 **GWP-IOBC*** kg CO₂ e 1,70E-01 0,00E+00 0,00E+00 0,00E+00 0,00E+00 kg CFC11 e ODP 2,80E-09 0,00E+00 0,00E+00 0,00E+00 0,00E+00 POCP** kg C₂H₄ e 1,70E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ΑP kg SO₂e 1,17E-03 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ΕP kg PO₄3-e 5,17E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 **ADPE** ΜJ 5,32E-08 0,00E+00 0,00E+00 0,00E+00 0,00E+00 ADPM 0,00E+00 0,00E+00 kg Sb e 2,18E+00 0,00E+00 0.00E+00 **GWP** Global warming potential; **ODP** Depletion potential of the stratospheric ozone layer; **POCP** Formation potential of tropospheric photochemical oxidants; **AP** Acidification potential of land and water; **EP** Eutrophication potential; **ADPM** Abiotic depletion potential for non fossil resources; **ADPE** Abiotic depletion potential for fossil resources. - * Also referred to as GWP-GHG in context of e.g. Swedish and Finish legislation. - ** Negative impact occur due to negative characterization factors. LCl origin from GaBi database separates NOx into NO and NO2, in combination with the applied characterization model with a marginal approach for POCP based on highly polluted ambient air than can result in a negative characterization factor for nitric oxide. Resource use, version A1+2 and EF 3.1 — mandatory indicators | Parameter | Unit | | C1 | C2 | C3 | C4 | D | |-----------|----------------|--|----------|----------|----------|----------|----------| | RPEE | MJ | | 4,85E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | RPEM | MJ | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | TPE | MJ | | 4,85E-02 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | NRPE | MJ | | 2,20E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | NRPM | MJ | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | TRPE | MJ | | 2,20E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | SM | kg | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | RSF | MJ | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | NRSF | MJ | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | W | m ³ | | 1,42E-04 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | RPEE Renewable primary energy resources used as energy carrier; RPEM Renewable primary energy resources used as raw materials; TPE Total use of renewable primary energy resources; NRPE Non renewable primary energy resources used as energy carrier; NRPM Non renewable primary energy resources used as materials; TRPE Total use of non renewable primary energy resources; SM Use of secondary materials; RSF Use of renewable secondary fuels; NRSF Use of non renewable secondary fuels; W Use of net fresh water. Energy stored as energy in the packaging materials is directly balanced out in the module it arises, and stored biogenic carbon in the product is balanced out over the life cycle, exactly the same as stored biogenic carbon is reported in GWP. End of life — Waste, version A1+2 and EF 3.1 — mandatory indicators | - | 1114 | |
 | | 00 | 0.4 | | |-----------|------|--|-----------|----------|----------|----------|----------| | Parameter | Unit | | C1 | C2 | C3 | C4 | ט | | HW | kg | | 1,38E-03 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | NHW | kg | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 4,82E+02 | 0,00E+00 | | RW | kg | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | HW Hazardous waste disposed; NHW Non hazardous waste disposed; RW Radioactive waste disposed End of life — Output flow, version A1+2 and EF 3.1 — mandatory indicators | | | , | | | | | | | | |-----------|------|---|--|--|----------|----------|----------|----------|----------| | Parameter | Unit | | | | C1 | C2 | C3 | C4 | D | | CR | kg | | | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | MR | kg | | | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | MER | kg | | | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | EEE | MJ | | | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | | ETE | MJ | | | | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | CR Components for reuse; MR Materials for recycling; MER Materials for energy recovery; EEE Exported electric energy; ETE Exported thermal energy ## Additional requirements The GWP total indicator result reported below is the same result as the indicator value as for GWP-IOBC/GHG. The reported LCA result in this EPD and the core process in A3 use this approch: Location based electricity mix from the use of electricity in manufacturing | National electricity grid | Data source | Foreground /core [kWh] | GWPtotal
[kg CO₂e/kWh] | Sum
[kg CO₂e] | |-----------------------------|-------------|------------------------|---------------------------|------------------| | Electricity grid mix Sweden | ecoinvent | 76 | 0,020 | 1,543 | | Electricity grid mix Sweden | Gabi | 76 | 0,042 | 3,195 | The GWP result above is based on national production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity bought in the core manufacturing process in module A3 per declared unit. An alternative figure for electricity used in the core process are reported here that can be used to recalulate the result A1-3: Market-based use of electricity in the manufacturing phase Electricity source Data source Foreground /core [kWh] GWPtotal [kg CO₂e/kWh] Sum [kg CO₂e] Flectricity in A3 are using GoOs or residual mix Sweden Gabi 76 0.035 2.666 | | Electricity in A3 are using GoOs or residual mix Sweden | Gabi | 76 | 0,035 | 2,666 | | |--|--|------|-----|--------|-------|--| | ✓ | The GWP result above is based on: Guarantee of origin (GoO) electricity used National residual mix electricity accourding to Grexel/AIB Data used in the upstream system that use source of origion are listed below No such data are used. | | | | | | | \rightarrow \right | Hazardous substances ☐ The product contains no substances given by the REACH Candidate list ☐ The product contains substances given by the REACH Candidate list or the Norwegian priority list that are less than 0,1 % by ☐ The product contain dangerous substances, more then 0,1% by weight, given by the REACH Candidate List, see table. ☐ The product contains no substances given by the REACH Candidate list or the Norwegian priority list. ☐ The product is classified as hazardous waste (Avfallsforskiften, Annex III), see table below. | | | | | | | | Name | CAS | no. | Amount | | | | L | | | | | | | #### **Indoor environment** Not relevant ## **Carbon footprint** Carbon footprint according to ISO 14067 has not been worked out for the product. **Bibliography** ISO 14025:2006 Environmental labels and declarations - Type III environmental declarations - Principles and procedures. ISO 14044:2006+A1:2017+A2:2020 Environmental management - Life cycle assessment - Requirements and guidelines. EN 15804:2012+A1:2013 Sustainability of construction works — Environmental product declaration — Core rules for the product category of construction products. EN 15804:2012+A2:2019 Sustainability of construction works — Environmental product declaration — Core rules for the product category of construction products. ISO 21930:2007 Sustainability in building construction — Environmental declaration of building products. c-PCR NPCR 015 PCR Part B for wood and woodbased products for use in construction (07.10.2021). Erlandsson M, Peterson D: Klimatpåverkan för byggnader med olika energiprestanda. För Energimyndigheten och Horn et al Land use and forestry in the environmental footprint. Fraunhofer Institute for Building Physics IBP et al, carried out on behalf of Cepi. Stuttgart, 2021-09-29. Erlandsson M Generic LCA report for the EPD generator: Sawmill products – As the basis for the publication of EPDs within EPD Norway. Revised March 2025. Brag E Supplementary LCA report for Derome Timber: Pre-painted exterior cladding made of spruce, u 16%, June 2025 Lundström J Energy consumption for different frame materials during the production phase of an apartment building. Diploma work, HT2016, BY1704, Umeå University. | | Program operator and publisher The Norwegian EPD Foundation | Phone: | +47 23 08 80 00 | |--------------|---|---------|------------------------------------| | @ epd-norge | Post Box 5250 Majorstuen, 0303 Oslo | e-mail: | post@epd-norge.no | | | Norway | web | www.epd-norge.no | | | Owner of the declaration | Phone: | +46 (0)340 666410 | | Doromo | Derome Timber AB | | | | Derome | Bjurumsvägen 14, 432 68 Veddige | e-mail: | info@derome.se | | | Sweden | web: | www.derome.se | | | Author of the Life Cycle Assessment | Phone: | +46 (0)340 666410 | | Derome | Elias Brag | | | | Delonie | Derome Timber AB | e-mail: | info@derome.se | | | | web: | www.derome.se | | ECO PLATFORM | ECO Platform | | | | FDD | ECO Platform | web | www.eco-platform.org | | VERIFIED | ECO Portal | web | www.eco-platform.org/epd-data.html | # EPD for the best environmental decision